

USN 17MATDIP31

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Additional Mathematics - I

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the modulus and amplitude of $\frac{(1+i)^2}{3+i}$. (06 Marks)

b. If $x + \frac{1}{x} = 2 \cos \alpha$, then prove that $x^n + \frac{1}{x^n} = 2 \cos n \alpha$. (07 Marks)

c. Find the fourth roots of $1 - \sqrt[1]{3}$ and represent them on an argand plane. (07 Marks)

OF

2 a. If the vectors $2\hat{\mathbf{i}} + \lambda\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $4\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ are perpendicular to each other than find the value of λ . (06 Marks)

b. Find the sine of the angle between the vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} - 3\hat{j} + 2\hat{k}$. (07 Marks)

c. Find λ such that the vectors $2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$ and $3\hat{\mathbf{i}} + \lambda\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ are coplanar. (07 Marks)

Module-2

3 a. Find the n^{th} derivative of $\cos x \cos 2x \cos 3x$.

(06 Marks)

b. With usual notations prove that Tan $\phi = r \frac{d\theta}{dr}$.

(07 Marks)

c. Prove that $\sqrt{1+\sin 2x} = 1 + x - \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{24} + \dots$ By using Maclaurin's expansion. (07 Marks)

ΩR

4 a. If $u = Tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$. (06 Marks)

b. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$. (07 Marks)

c. If $u = e^x \cos y$, $v = e^x \sin y$, find $J = \frac{\partial(u, v)}{\partial(x, y)}$. (07 Marks)

Module-3

5 a. Evaluate $\int_0^{\pi} x \cos^6 x dx$. (06 Marks)

b. Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{dxdy}{\sqrt{(1-x^2)(1-y^2)}}$. (07 Marks)

c. Evaluate $\int_0^1 \int_0^2 \int_1^2 x^2 y z dx dy dz$. (07 Marks)

17MATDIP31

OR

a. Evaluate $\int \sin^6 x \, dx$.

(06 Marks)

b. Evaluate $\iint (x^2 + y^2) dx dy$, where R is the triangle bounded by the lines y = 0, y = x and

x = 1. (07 Marks)

c. Evaluate $\int_0^1 \int_0^1 \int_0^1 e^{x+y+z} dx dy dz.$

(07 Marks)

moves along a whose position given by $\vec{r} = \left(t - \frac{t^3}{3}\right)\hat{i} + t^2\hat{j} + \left(t + \frac{t^3}{3}\right)\hat{k}$. Find the velocity and acceleration at t = 3. (06 Marks)

Find the unit normal vector to the surface xy + x + zx = 3 at (1, 1, 1). (07 Marks)

Find div \vec{F} and curl \vec{F} , where $\vec{F} = \nabla(x^3 + y^3 + z^3 - 3xyz)$.

(07 Marks)

A particle moves so that its position vector is given by $\vec{r} = \cos wt \hat{i} + \sin wt \hat{j}$, where w is a 8 constant. Show that the velocity \vec{V} is perpendicular to \vec{r} . (06 Marks)

b. If $\vec{F} = (x + y + 1) \hat{i} + \hat{j} - (x + y) \hat{k}$, show that \vec{F} curl $\vec{F} = 0$. (07 Marks)

Show that $\vec{f} = (\sin y + z) \hat{i} + (x \cos y - z) \hat{j} + (x-y) \hat{k}$ is irrotational. Also find ϕ such that $\vec{f} = \nabla \phi$. (07 Marks)

a. Solve $\frac{dy}{dx} = 1 + \frac{y}{x} + \left(\frac{y}{x}\right)^2$

(06 Marks)

b. Solve $\frac{dy}{dx} + y \cot x = \sin x$. c. Solve $(x^2 + y)dx + (y^3 + x) dy = 0$

(07 Marks)

(07 Marks)

OR

a. Solve $\frac{dy}{dx} + \frac{y}{x} = y^2x$.

(06 Marks)

b. Solve $(y \cos x + \sin y + y) dx + (\sin x + x \cos y + x) dy = 0$.

(07 Marks)

c. Solve $y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$.

(07 Marks)